photog.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
🌈 An inclusive place for your photos, silliness, and convos! 🌈

Administered by:

Server stats:

242
active users

#rag

0 posts0 participants0 posts today
petersuber<p>Update. This new study compares two <a href="https://fediscience.org/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> tools (<a href="https://fediscience.org/tags/LLMs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLMs</span></a> with <a href="https://fediscience.org/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a>) on the task of predicting the citation impact of scholarly articles. <br><a href="https://aclanthology.org/2025.sdp-1.11/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">aclanthology.org/2025.sdp-1.11</span><span class="invisible">/</span></a></p>
Sarah Lea<p>LLMs don’t know your PDF.<br>They don’t know your company wiki either. Or your research papers.</p><p>What they can do with RAG is look through your documents in the background and answer using what they find.</p><p>But how does that actually work? Here’s the basic idea behind RAG:<br>:blobcoffee: Chunking: The document is split into small, overlapping parts so the LLM can handle them. This keeps structure and context.<br>:blobcoffee: Embeddings &amp; Search: Each part is turned into a vector (a numerical representation of meaning). Your question is also turned into a vector, and the system compares them to find the best matches.<br>:blobcoffee: Retriever + LLM: The top matches are sent to the LLM, which uses them to generate an answer based on that context.</p><p><a href="https://techhub.social/tags/llm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>llm</span></a> <a href="https://techhub.social/tags/largelanguagemodel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>largelanguagemodel</span></a> <a href="https://techhub.social/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://techhub.social/tags/ki" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ki</span></a> <a href="https://techhub.social/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://techhub.social/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://techhub.social/tags/technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>technology</span></a> <a href="https://techhub.social/tags/vector" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vector</span></a> <a href="https://techhub.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://techhub.social/tags/vectorsearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vectorsearch</span></a> <a href="https://techhub.social/tags/vector" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vector</span></a> <a href="https://techhub.social/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a></p>
Sarah Lea<p>Want to really understand how RAG, vector search &amp; chunking work?</p><p>Then stop reading theory and build your own chatbot.</p><p>This guide shows you how to create a local PDF chatbot using: </p><p>☕ LangChain</p><p>☕ FAISS (vector DB)</p><p>☕ Mistral via Ollama</p><p>☕ Python &amp; Streamlit</p><p>Step-by-step, from environment setup to deployment. Ideal for learning how Retrieval-Augmented Generation works in practice.</p><p>👉 <a href="https://medium.com/data-science-collective/rag-in-action-build-your-own-local-pdf-chatbot-as-a-beginner-96c2833869ff" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">medium.com/data-science-collec</span><span class="invisible">tive/rag-in-action-build-your-own-local-pdf-chatbot-as-a-beginner-96c2833869ff</span></a></p><p>Comment “WANT” if you need the friends link to the article, as you don’t have paid Medium.</p><p><a href="https://techhub.social/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://techhub.social/tags/tech" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>tech</span></a> <a href="https://techhub.social/tags/Technology" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Technology</span></a> <a href="https://techhub.social/tags/chatbot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>chatbot</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/ki" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ki</span></a> <a href="https://techhub.social/tags/python" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>python</span></a> <a href="https://techhub.social/tags/vector" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vector</span></a> <a href="https://techhub.social/tags/langchain" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>langchain</span></a> <a href="https://techhub.social/tags/datascience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datascience</span></a> <a href="https://techhub.social/tags/DataScientist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScientist</span></a> <a href="https://techhub.social/tags/streamlit" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>streamlit</span></a></p>
Jascha<p>Hello World! <a href="https://infosec.exchange/tags/introduction" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>introduction</span></a> </p><p>Work in cybersec for 25+ years. Big OSS proponent. </p><p>Latest projects:</p><p>VectorSmuggle is acomprehensive proof-of-concept demonstrating vector-based data exfiltration techniques in AI/ML environments. This project illustrates potential risks in RAG systems and provides tools and concepts for defensive analysis.<br><a href="https://github.com/jaschadub/VectorSmuggle" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/jaschadub/VectorSmu</span><span class="invisible">ggle</span></a></p><p>SchemaPin protocol for cryptographically signing and verifying AI agent tool schemas to prevent supply-chain attacks (aka MCP Rug Pulls).<br><a href="https://github.com/ThirdKeyAI/SchemaPin" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">github.com/ThirdKeyAI/SchemaPin</span><span class="invisible"></span></a></p><p><a href="https://infosec.exchange/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://infosec.exchange/tags/AiResearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AiResearch</span></a> <a href="https://infosec.exchange/tags/aisecurity" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aisecurity</span></a> <a href="https://infosec.exchange/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://infosec.exchange/tags/mcp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mcp</span></a> <a href="https://infosec.exchange/tags/mcpserver" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mcpserver</span></a></p>
Alvin Ashcraft 🐿️<p>Smarter SK Agents with Contextual Function Selection.</p><p><a href="https://devblogs.microsoft.com/semantic-kernel/smarter-sk-agents-with-contextual-function-selection/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">devblogs.microsoft.com/semanti</span><span class="invisible">c-kernel/smarter-sk-agents-with-contextual-function-selection/</span></a> </p><p><a href="https://hachyderm.io/tags/semantickernel" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>semantickernel</span></a> <a href="https://hachyderm.io/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://hachyderm.io/tags/aiagents" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>aiagents</span></a> <a href="https://hachyderm.io/tags/dotnet" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>dotnet</span></a> <a href="https://hachyderm.io/tags/csharp" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>csharp</span></a> <a href="https://hachyderm.io/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a></p>
DiSC_uibk<p>If you start using the Rankify toolkit, feel free sharing your experience with us or let us know if you have any feedback or questions! 🤓 </p><p><a href="https://social.uibk.ac.at/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://social.uibk.ac.at/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> <a href="https://social.uibk.ac.at/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://social.uibk.ac.at/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
DiSC_uibk<p>Have you ever struggled to find the best document retrieval model for your project? Or had to combine multiple frameworks just to get a basic <a href="https://social.uibk.ac.at/tags/InformationRetrieval" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>InformationRetrieval</span></a> pipeline running?</p><p>Check out Rankify, developed by Abdelrahman Abdallah from the <a href="https://social.uibk.ac.at/tags/DataScience" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DataScience</span></a> Group <span class="h-card" translate="no"><a href="https://social.uibk.ac.at/@uniinnsbruck" class="u-url mention" rel="nofollow noopener" target="_blank">@<span>uniinnsbruck</span></a></span>, which provides an all-in-one retrieval, re-ranking, and retrieval-augmented generation toolkit: <a href="https://www.doi.org/10.48763/000013" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">doi.org/10.48763/000013</span><span class="invisible"></span></a></p><p><a href="https://social.uibk.ac.at/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://social.uibk.ac.at/tags/MachineLearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>MachineLearning</span></a> <a href="https://social.uibk.ac.at/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://social.uibk.ac.at/tags/OpenSource" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenSource</span></a> <a href="https://social.uibk.ac.at/tags/FOSS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FOSS</span></a> <a href="https://social.uibk.ac.at/tags/NLP" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>NLP</span></a> <a href="https://social.uibk.ac.at/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a></p>
Bob 🇨🇦🇲🇽🇺🇦<p><a href="https://www.theregister.com/2025/05/27/opinion_column_ai_model_collapse/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">theregister.com/2025/05/27/opi</span><span class="invisible">nion_column_ai_model_collapse/</span></a></p><p><a href="https://infosec.exchange/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://infosec.exchange/tags/machinelearning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>machinelearning</span></a> <a href="https://infosec.exchange/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a></p>
Nicole Hennig<p>Why enterprise RAG systems fail: Google study introduces ‘sufficient context’ solution <a href="https://venturebeat.com/ai/why-enterprise-rag-systems-fail-google-study-introduces-sufficient-context-solution/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">venturebeat.com/ai/why-enterpr</span><span class="invisible">ise-rag-systems-fail-google-study-introduces-sufficient-context-solution/</span></a> <a href="https://techhub.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a> <a href="https://techhub.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://techhub.social/tags/hallucination" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hallucination</span></a></p>
Chris Vitalos<p>If true, <a href="https://sigmoid.social/tags/hallucinations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>hallucinations</span></a> cast serious doubt on whether the end goal of <a href="https://sigmoid.social/tags/AGI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AGI</span></a> can be achieved with today’s <a href="https://sigmoid.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> architectures and training methods.</p><p>While ongoing research explores <a href="https://sigmoid.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> and hybrid models and inference techniques, no implementation to date has fully eliminated flawed reasoning.</p><p>What consumer would trust mission-critical decisions if an AGI is known to confidently state falsehoods?</p><p><a href="https://www.newscientist.com/article/2479545-ai-hallucinations-are-getting-worse-and-theyre-here-to-stay/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">newscientist.com/article/24795</span><span class="invisible">45-ai-hallucinations-are-getting-worse-and-theyre-here-to-stay/</span></a></p><p><a href="https://sigmoid.social/tags/GenAI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GenAI</span></a> <a href="https://sigmoid.social/tags/AI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AI</span></a></p>
Alvin Ashcraft 🐿️<p>Retrieval-augmented generation with Llama Stack and Node.js.</p><p><a href="https://developers.redhat.com/articles/2025/04/30/retrieval-augmented-generation-llama-stack-and-nodejs" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">developers.redhat.com/articles</span><span class="invisible">/2025/04/30/retrieval-augmented-generation-llama-stack-and-nodejs</span></a> </p><p><a href="https://hachyderm.io/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://hachyderm.io/tags/nodejs" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nodejs</span></a> <a href="https://hachyderm.io/tags/javascript" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>javascript</span></a> <a href="https://hachyderm.io/tags/llama" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>llama</span></a> <a href="https://hachyderm.io/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://hachyderm.io/tags/llm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>llm</span></a></p>
MottG<p>Citegeist is a free tool that helps you find articles related to a topic you are interested in. You need to seed it by entering the abstract of a relevant article or by uploading a relevant article. Citegeist not only finds related articles, but it generates a short report with info from the related articles also!<br>Citegeist works by using RAG info retrieval on the arxiv corpus of research papers.</p><p><a href="https://citegeist.org" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="">citegeist.org</span><span class="invisible"></span></a></p><p><a href="https://researchbuzz.masto.host/tags/research" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>research</span></a> <a href="https://researchbuzz.masto.host/tags/science" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>science</span></a> <a href="https://researchbuzz.masto.host/tags/2ndOrderSearch" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>2ndOrderSearch</span></a> <br><a href="https://researchbuzz.masto.host/tags/Citegeist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Citegeist</span></a> <a href="https://researchbuzz.masto.host/tags/arxivTools" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>arxivTools</span></a> <a href="https://researchbuzz.masto.host/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a></p>
Major Hayden 🤠<p>I finally cobbled all my thoughts about retrieval-augmented generation, or RAG, together in one place. So many people claimed it was so easy, but it's not.</p><p>This post is a high level overview of my lessons learned and some suggestions for you if you go down this path. 🧗‍♂️</p><p><a href="https://major.io/p/dont-tell-me-rag-is-easy/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">major.io/p/dont-tell-me-rag-is</span><span class="invisible">-easy/</span></a></p><p><a href="https://social.lol/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://social.lol/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://social.lol/tags/llm" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>llm</span></a> <a href="https://social.lol/tags/vector_database" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vector_database</span></a></p>
Manel Guerra<p>Generar contingut amb IA per contrarrestar l'excés de cerques amb IA. Què pot sortir malament?</p><p> Al blog: Bloquejar cerques d'IA embrutant (també) dades </p><p><a href="https://www.manelguerra.com/blog/bloquejar-cerques-ia/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">manelguerra.com/blog/bloquejar</span><span class="invisible">-cerques-ia/</span></a></p><p><a href="https://mastodont.cat/tags/blog" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>blog</span></a> <a href="https://mastodont.cat/tags/ia" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ia</span></a> <a href="https://mastodont.cat/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a> <a href="https://mastodont.cat/tags/datapoisoning" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>datapoisoning</span></a></p>
Alvin Ashcraft 🐿️<p>Understand Retrieval Augmented Generation in Under 8 Minutes with Michael Jolley.</p><p><a href="https://www.youtube.com/watch?v=DUCW0Aeo1AI" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="ellipsis">youtube.com/watch?v=DUCW0Aeo1A</span><span class="invisible">I</span></a></p><p><a href="https://hachyderm.io/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> <a href="https://hachyderm.io/tags/rag" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>rag</span></a></p>
Ben Lorica 罗瑞卡<p>🆕 Tom Smoker of WhyHow.ai on building better AI systems with structured data and knowledge graphs<br><a href="https://indieweb.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://indieweb.social/tags/GraphRAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphRAG</span></a> <a href="https://indieweb.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://indieweb.social/tags/search" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>search</span></a> <a href="https://indieweb.social/tags/vectorDB" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vectorDB</span></a><br><a href="https://thedataexchange.media/whyhow-tom-smoker/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">thedataexchange.media/whyhow-t</span><span class="invisible">om-smoker/</span></a></p>
Ben Lorica 罗瑞卡<p>🆕 Tom Smoker of WhyHow.ai on building better AI systems with structured data and knowledge graphs<br><a href="https://indieweb.social/tags/LLM" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LLM</span></a> <a href="https://indieweb.social/tags/GraphRAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GraphRAG</span></a> <a href="https://indieweb.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> <a href="https://indieweb.social/tags/search" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>search</span></a> <a href="https://indieweb.social/tags/vectorDB" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>vectorDB</span></a><br><a href="https://thedataexchange.media/whyhow-tom-smoker/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">thedataexchange.media/whyhow-t</span><span class="invisible">om-smoker/</span></a></p>
Aria Burrell 🇨🇦<p>Tool for populating your <a href="https://xn--xxa.computer/tags/OpenWebUI" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>OpenWebUI</span></a> <a href="https://xn--xxa.computer/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> with data from <a href="https://xn--xxa.computer/tags/RSS" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RSS</span></a> feeds.</p><p>Saves pulled content to files as well so it can all be resubmitted if you change embedding models.</p><p>I'm using it with <a href="https://xn--xxa.computer/tags/DeepSeek" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>DeepSeek</span></a>-R1 and <a href="https://xn--xxa.computer/tags/nomic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>nomic</span></a>-embed-text</p><p><a href="https://github.com/litui/rss-rag-ingest" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">github.com/litui/rss-rag-inges</span><span class="invisible">t</span></a></p>
Pierre Boudes<p>Dernier sujet : la mal-nommée intelligence artificielle générative. <br>Plus précisément, les grands modèles de langages (LLM) et RAG (récupération-génération documentaire) dans un contexte ESR. On est en train de mettre en place infrastructures et services avec une objectivation de l'impact environnemental. </p><p>L'UNIF est pour le moment juste en soutien pour le montage, l'hébergement et sur les mesures de l'impact. </p><p>Est-ce qu'un service de <a href="https://universites.social/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> spécifique à l'ESR vous semble pertinent/nécessaire&nbsp;?</p>
PrivacyDigest<p><a href="https://mas.to/tags/Anthropic" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Anthropic</span></a> builds <a href="https://mas.to/tags/RAG" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>RAG</span></a> directly into <a href="https://mas.to/tags/Claude" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Claude</span></a> models with new <a href="https://mas.to/tags/Citations" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Citations</span></a> <a href="https://mas.to/tags/API" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>API</span></a> <br><a href="https://mas.to/tags/ai" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>ai</span></a> </p><p><a href="https://arstechnica.com/ai/2025/01/anthropic-adds-citations-in-bid-to-avoid-confabulating-ai-models/" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">arstechnica.com/ai/2025/01/ant</span><span class="invisible">hropic-adds-citations-in-bid-to-avoid-confabulating-ai-models/</span></a></p>