Jon Awbrey<p>Information = Comprehension × Extension • Selection 1.1<br>• <a href="https://inquiryintoinquiry.com/2024/10/05/information-comprehension-x-extension-selection-1-a/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/10</span><span class="invisible">/05/information-comprehension-x-extension-selection-1-a/</span></a></p><p>Our first text comes from Peirce's Lowell Lectures of 1866, titled “The Logic of Science, or, Induction and Hypothesis”. I still remember the first time I read these words and the light that lit up the page and my mind.</p><p>❝Let us now return to the information. The information of a term is the measure of its superfluous comprehension. That is to say that the proper office of the comprehension is to determine the extension of the term. For instance, you and I are men because we possess those attributes — having two legs, being rational, &c. — which make up the comprehension of “man”. Every addition to the comprehension of a term lessens its extension up to a certain point, after that further additions increase the information instead.❞</p><p>(Peirce 1866, p. 467)</p><p>Reference —</p><p>Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.</p><p>Resources —</p><p>Inquiry Blog • Survey of Pragmatic Semiotic Information<br>• <a href="https://inquiryintoinquiry.com/2024/03/01/survey-of-pragmatic-semiotic-information-8/" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">inquiryintoinquiry.com/2024/03</span><span class="invisible">/01/survey-of-pragmatic-semiotic-information-8/</span></a></p><p>OEIS Wiki • Information = Comprehension × Extension<br>• <a href="https://oeis.org/wiki/Information_%3D_Comprehension_%C3%97_Extension" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">oeis.org/wiki/Information_%3D_</span><span class="invisible">Comprehension_%C3%97_Extension</span></a></p><p>C.S. Peirce • Upon Logical Comprehension and Extension<br>• <a href="https://peirce.sitehost.iu.edu/writings/v2/w2/w2_06/v2_06.htm" rel="nofollow noopener noreferrer" translate="no" target="_blank"><span class="invisible">https://</span><span class="ellipsis">peirce.sitehost.iu.edu/writing</span><span class="invisible">s/v2/w2/w2_06/v2_06.htm</span></a></p><p><a href="https://mathstodon.xyz/tags/Peirce" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Peirce</span></a> <a href="https://mathstodon.xyz/tags/Logic" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Logic</span></a> <a href="https://mathstodon.xyz/tags/Inference" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Inference</span></a> <a href="https://mathstodon.xyz/tags/Inquiry" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Inquiry</span></a> <a href="https://mathstodon.xyz/tags/Abduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Abduction</span></a> <a href="https://mathstodon.xyz/tags/Induction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Induction</span></a> <a href="https://mathstodon.xyz/tags/Deduction" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Deduction</span></a> <a href="https://mathstodon.xyz/tags/LogicOfScience" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>LogicOfScience</span></a> <br><a href="https://mathstodon.xyz/tags/Information" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Information</span></a> <a href="https://mathstodon.xyz/tags/Comprehension" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Comprehension</span></a> <a href="https://mathstodon.xyz/tags/Extension" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Extension</span></a> <a href="https://mathstodon.xyz/tags/InformationEqualsComprehensionTimesExtension" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>InformationEqualsComprehensionTimesExtension</span></a> <br><a href="https://mathstodon.xyz/tags/Semiotics" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Semiotics</span></a> <a href="https://mathstodon.xyz/tags/SignRelations" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>SignRelations</span></a> <a href="https://mathstodon.xyz/tags/Icon" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Icon</span></a> <a href="https://mathstodon.xyz/tags/Index" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Index</span></a> <a href="https://mathstodon.xyz/tags/Symbol" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>Symbol</span></a> <a href="https://mathstodon.xyz/tags/PragmaticSemioticInformation" class="mention hashtag" rel="nofollow noopener noreferrer" target="_blank">#<span>PragmaticSemioticInformation</span></a></p>