photog.social is one of the many independent Mastodon servers you can use to participate in the fediverse.
A place for your photos and banter. Photog first is our motto Please refer to the site rules before posting.

Administered by:

Server stats:

243
active users

#algorithmicart

0 posts0 participants0 posts today
Dani Laura (they/she/he)<p>"The Great Splash". Based on the golden ratio.<br><a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/GoldenRatio" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GoldenRatio</span></a></p>
Steven Dollins<p>A round hole in a square peg</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Dani Laura (they/she/he)<p>In the following artworks the corners of the polygonal lines are rounded.<br><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a></p>
Dani Laura (they/she/he)<p>These artworks are based on a generalization of Lucas sequences for complex numbers, defined as:<br>Z(0) = 1<br>Z(1) = 1 or i<br>Z(n) = shrink( e^(iθ)·Z(n-1) + Z(n-2) )</p><p>Where shrink() is a function which decreases a complex number into the two-unit square or the unit circle centered at the origin. In these works I use three different versions, based on taking out the integer part of the real and imaginary parts (or the integer part minus 1), or of the modulus of the number in polar form.</p><p>Figure 1 depicts the 128 values walk using θ = π/5 and Z(1) = i, and the shrinking function which takes out the integer part of the real and imaginary parts.</p><p>In the three artworks that follow, the lines connecting successive values toggle between being drawn or not. See the alt text for more information related to the artworks.<br><a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/math" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>math</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a></p>
Dani Laura (they/she/he)<p>Fractal with decagonal symmetry for <a href="https://mathstodon.xyz/tags/FractalFriday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FractalFriday</span></a> .<br><a href="https://mathstodon.xyz/tags/fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>fractal</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a></p>
Steven Dollins<p>80 vertices in 2-fold dihedral symmetry has triangle strips of 4 different lengths.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>We can also get 80-vertex tetrahedral symmetry with a more "traditional" arrangement of 12 pentagons and the rest hexagons.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Steven Dollins<p>Here is an 80-vertex sphere in tetrahedral symmetry with 24 valence-7 vertices.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>
Jeff Palmer<p>Completed this painting recently. Not sure if I've mentioned this, but I've transitioned to a mode where I create computer algorithms that generate images, which I then paint by hand. I find the process of mapping rigid computer-based processes to the messy real world to be an extremely satisfying approach.</p><p><a href="https://genart.social/tags/Art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Art</span></a> <a href="https://genart.social/tags/Artist" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Artist</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/Painting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Painting</span></a> <a href="https://genart.social/tags/AcrylicPainting" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AcrylicPainting</span></a></p>
Dani Laura (they/she/he)<p>Nature promotes diversity, don't be anti-nature.<br>Good <a href="https://mathstodon.xyz/tags/Stonewall" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Stonewall</span></a> uprising anniversary! (28th of June)<br>This piece was created as follows: each element was generated based on a prime number from 2 upwards, specifically the first six decimal places of its square root. The first four decimals defined the shape, the next two the colours.<br>Shapes are based on the properties of the plastic ratio (plastic as in plastic arts, not the infamous material), a lesser-known ratio with many interesting properties.<br>As can be seen in the second picture, there are several ways to connect the ends of a quarter of a unit circle as a sequence of quarter sectors with radii the inverse powers of this ratio, up to the fifth. There are exactly ten possibilities disregarding sector rotations, so each one can represent one decimal place (third picture), and four sides make up the whole shape.<br>For the colours, each decimal represents one of ten colours; inside they are renderend lighter and outside darker.<br>Lastly, the grey background was generated using the Halton sequences of 2, 3 and 5.</p><p><a href="https://mathstodon.xyz/tags/pride" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>pride</span></a> <a href="https://mathstodon.xyz/tags/LGBTQ" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>LGBTQ</span></a> <a href="https://mathstodon.xyz/tags/mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>mathart</span></a> <a href="https://mathstodon.xyz/tags/algorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>algorithmicArt</span></a> <a href="https://mathstodon.xyz/tags/AbstractArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AbstractArt</span></a> <a href="https://mathstodon.xyz/tags/geometry" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>geometry</span></a></p>
Steven Dollins<p>Tetrahedral symmetry requires that a general point be in a set of 12 -- on each of the 4 faces in each of 3 orientations. You can also add 4 points at the vertices, 4 at each face center, or 6 at each edge center. Combined, any even number of points &gt;= 4 can be arranged with tetrahedral symmetry, albeit not always evenly.</p><p>Here is 50 points in tetrahedral symmetry which requires that some of them have valence 7.</p><p><a href="https://genart.social/tags/AlgorithmicArt" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>AlgorithmicArt</span></a> <a href="https://genart.social/tags/CreativeCoding" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>CreativeCoding</span></a> <br><a href="https://genart.social/tags/Processing" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Processing</span></a> <a href="https://genart.social/tags/glsl" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>glsl</span></a> <a href="https://genart.social/tags/shaders" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>shaders</span></a></p>